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Abstract: N M R  spectra of  urine from rats treated with a range of liver, kidney and testicular toxins at various doses were 
measured  and classified using neural network methods.  Toxin-induced changes in the levels of  18 low molecular weight 
endogenous  urinary metaboli tes were assessed using a simple semi-quanti tat ive scoring system. These scores were used as 
input to an artificial neural network, the use of which has been explored as a means  of predicting the class of  toxin. With 
this limited data set, based only the level of  the maximal  changes of these 18 metaboli tes,  the network was able to predict 
the class and hence target organ of the toxins. Renal  cortical toxicity was well predicted as was liver toxicity. The few 
examples  of renal medullary toxins in the data set resulted in relatively poor training of the network al though correct 
classification was still possible. 
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Introduction 

The usefulness of high field high resolution IH 
NMR spectroscopy of body fluids, principally 
urine, for the investigation of the biochemical 
changes that accompany toxin-induced organ 
damage is well documented [1]. The changes in 
the levels of endogenous metabolites found in 
urine following a toxic insult have been used to 
classify the site of the lesion and to explore the 
biological effects of the toxins [2-7]. The 
altered metabolite profile as detected using 
NMR spectroscopy can be regarded as provid- 
ing a characteristic pattern for the type of toxin 
and this has led to the use of more formal 
computer-based methods for using the altered 
patterns to classify the urine samples according 
to the site of toxic lesion [7-9]. The methods 
used in general were dimension reduction 
techniques which allowed visualization of the 
toxin-related NMR spectra in simple two- or 
three-dimensional maps, thereby reducing the 
n-dimensional problem (where n is the number 
of metabolite intensities measured in each 
urine NMR spectrum) to one in which the 
similarity of the toxins can be visualized. This 
approach has been extended through the use of 

so-called "supervized" methods, whereby the 
sample class is used to determine which of the 
many measured descriptors are responsible for 
classifying the samples and which are irrele- 
vant. This approach proved very successful for 
the evaluation of the time course of cellular 
degeneration and subsequent regeneration 
following an acute toxic insult [8]. For dimen- 
sion reduction and visualization, the main 
techniques were cluster analysis, nonlinear 
mapping and principal components analysis 
[10l. 

This previous work demonstrated the use- 
fulness and robustness of this type of pattern 
recognition method and showed the effective- 
ness of supervised methods for eliminating 
"metabolite noise", i.e. irrelevant descriptors 
from the data set. In the earlier work [7-9[, 
this was achieved through the use of inter- and 
intra-group variance weight methods, although 
other techniques are available such as the 
method known as Soft Independent Modelling 
of Class Analogy, SIMCA [11], for classified 
data (such as for example, toxic vs non-toxic or 
liver vs kidney toxic) and partial least squares 
(PLS) [12] for continuous data. Such tech- 
niques, as well as leading to sample classifi- 
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cation, can provide insight into the biochemical 
changes caused by the toxins. However,  if this 
is not required and the need is for a robust 
automatic classification technique, then the 
application of artificial neural network soft- 
ware can be considered. 

Neural network methodology [13] has found 
a rapidly increasing application in many areas 
of prediction both within and outside science. 
Within NMR spectroscopy, the method has 
already found use in the prediction of chemical 
shifts [14, 15] especially for carbohydrates [16- 
19] and for identifying cross-peaks in 2-D 
N MR [20]. A neural net purports to mimic the 
way in which the brain works. We have used a 
supervised network with back propagation and 
its mode of operation is represented schemat- 
ically in Fig. 1. For each object, in this case an 
NMR spectrum derived from an animal dosed 
with a particular toxin, the n descriptors (here 
the levels of n metabolites) are entered at the 
input neurons for each sample and the network 
is trained by performing an optimization of 
weights of the interconnections between 
neurons, until, after input of all of the data of a 
training set, the values output at the output 
layer neurons are as close as possible to the 

values required. For example, if the desired 
output is a single number (in a drug meta- 
bolism study for example, this could be per- 
centage recovery) then there will be one output 
neuron. In the case described here with five 
classes of sample there will be five output 
neurons and the correct values for a sample 
which falls into class 1 would be 1-0-0-0-0 and a 
correct value for a sample which fails into class 
2 would be 0-1-0-0-0 and so on. The input to a 
neuron is the sum of the outputs of all of the 
neurons in the previous layer multiplied by the 
weight factor for each connection. It is these 
weights which are optimized at each stage of 
training the network. The output of a neuron is 
related to the summed inputs by a nonlinear 
transfer function, the commonest  being of 
sigmoid shape. The optimization is therefore 
non-linear and consists of iteratively varying 
the weights until the output values for each 
sample are as close as possible to the target 
values. The theory of neural nets has been 
reviewed [13] and further details can be found 
therein. 

We have now tested this neural network 
toxicological assessment approach by analysing 
the toxin induced changes in endogenous bio- 
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Figure I 
A representation of a typical artificial neural network shown here with a 5-3-2 architecture. It comprises an input layer of 
five neurons, one for each input descriptor, a hidden layer of three neurons, the number of which can be optimized 
according to the data, and an output layer of two neurons, one for each output variable. Bias neurons are included for the 
input and hidden layers. Input to a neuron, i, from a neuron in a previous layer, j, is given by I i = .Y,w w Oj, where O i is the 
output from the previous neuron and the summation is over all nodes in the previous layer. Wii is an adjustable weight for 
the i - f  connection. Output from neuron i is governed by a sigmoidal transfer function of the form O, = (1 + exp(- L))- L. 
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chemicals in urine as measured using JH NMR 
spectroscopy to ascertain whether the methods 
provide a robust approach which could lead to 
automatic toxin classification. 

Experimental 

The details of the toxicological experiments, 
NMR spectroscopic measurements and data 
collection have been described earlier [2-7]. 
All toxins used produced characteristic target 
organ-specific lesions except the lowest doses 
of cadmium (6~mol  kg -I) and mercury 
((l.5 mg kg -~) which were below the toxic 
threshold [2, 3]. The changes in the levels of 18 
endogenous metabolites were assessed for 25 
toxins over a 48-h period after dosing using a 
simple scoring system as described previously 
[7] and the results are given in Table 1. These 
relate to the maximum change irrespective of 
which time point in the toxicological study the 
effect occurred. Each score is the modal value 
for a group of animals, where positive values 
indicate an increase over control, zero rep- 
resents an unchanged level and negative values 
denote decreased values from control. The 
complete sample set consisted of 25 samples 
with 12, 2, 5, 2 and 4 members of classes 1-5 
consisted of 25 samples with 12, 2, 5, 2 and 4 
members of classes 1-5, respectively. The 
small number of samples available in most 
classes precluded the use of rigorous testing of 
significance levels and predictability by cross- 
validation. Cross-validation is inappropriate 
for small sample sizes as there is little redun- 
dancy in the data and each point contributes 
significantly to the model. In this situation, one 
can best test a model by predicting the class of 
new samples. To this end, a small test set was 
extracted from the sample set using three 
samples from the two largest classes. This 
comprised two class-1 toxins and one class-3 
toxin which were combined with three further 
class-1 toxin data sets which became available 
to form a six sample test set. No members of 
classes 2, 4 and 5 were represented in the test 
set due to paucity of data. 

The sample classes were as described in 
Table 1, i.e. five in all, including a non-toxic 
class from only two samples (resulting from 
non-toxic dose levels). The classification of the 
samples was confirmed by histopathology [2-7] 
and the classes were renal cortical (class-I), 
renal medullary (class-2), hepatic (class-3), 
non-toxic (class-4) and testicular/reproductive 

(class-5). The toxins were classified according 
to target organ based on the histopathology 
results [2-7] and each was given five values, 
thus a cortical toxin would have values 
1,0,0,0,0 and a renal medullary toxins had 
values 0,1,0,0,0, a hepatic toxin was 0,0,1,0,0, 
a control substance or a non-toxic level had 
0,0,0,1,(l and reproductive organ toxins were 
categorized as 0,0,0,0,1. Hence,  a perfectly 
trained network should return such values for 
perfect classification. Any deviation from 1 or 
0 reflects error in the classification process. 

Neural net calculations were performed on a 
386 Compaq PC fitted with a Delta II floating 
point processor from SAIC [211 using the 
SAIC ANSim software package [21]. The 18 
biochemical descriptors given in Table 1 were 
range-scaled in a linear fashion so that all 
values were in the range - 0 . 5  to +(1.5 prior to 
input to the network. The inter-neuron weights 
were initially set to random values in the range 
-0 .3  to +0.3 and the network was trained 
using a learning rate of 0.1 and a momentum 
term of 0.6 for both layers. The network 
geometry comprised 18 input neurons, 9 
hidden neurons and 5 output neurons with bias 
neurons in the first two layers. The bias 
neurons are introduced to off-set the origin of 
the transfer function. A bias neuron has an 
output value of one and an associated weight. 
The bias neuron-to-neuron weights are trained 
in a similar way to the other inter-neuron 
weights. 

Results 

Training of the network 
The network was trained for 100 cycles by 

the input of 18 descriptors for 19 toxins using 
the back propagation method. This rep- 
resented the minimum amount of training 
required to give good classification for the 
majority of the training set. Further training 
failed to significantly improve classification 
and could result in over-fitting problems and so 
reduce predictability of the network outside 
the training set. 

Prediction of individual toxin classes based on 
overall trained network 

Table 2 shows the predicted class values for 
the toxins used in the training and test sets. 
The network models all of the renal cortical 
toxins correctly with output values >0.89 in all 
cases, both for those in the training set and for 
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T a b l e  1 
Metabol i te  level changes from the 'H NMR spectra of urine following a single dose of various toxins 

Toxin ace ala HB cn cit glc gin 20G hip 

Hg (0.5)* - 1  0 2 0 - 2  0 0 - 2  - 1 
Hg (l .0)* 1 3 3 0 - 2  2 2 2 0 
Hg (2.0)* 3 3 3 - 2  - 3  3 2 3 1 
Hg (2.0 fed)* 1 1 0 - 1  - 3  2 1 - 2  - 1  
PAP (50)* 1 2 1 - 1 - 1 2 1 - 1 - 1 

PAP (100)* 1 2 1 - 1  - 2  3 2 - 1  - 1  
HCBD* 1 2 1 0 0 3 2 - 1  - 3  
UN* 1 0 3 - 2  - 3  3 2 - 2  - 3  
PI* 3 1 0 0 1 1 0 - 2  0 
BEA* 2 1 0 0 - 2  1 0 - 3  - 1  
HYD* 3 0 0 0 - 2  0 0 - 2  0 
CC14" 0 0 0 - 1  - 2  0 0 - 2  - 1  
THIO* 0 0 0 - 1  - 2  0 0 0 - 2  
ALY* 3 1 0 0 - 1 0 0 - 2  0 
Cd6* 0 0 0 0 0 0 0 0 - 1 
Cd9* 0 0 0 0 - 2  0 0 - 1 - 1 
Cdl2* 0 0 1 0 - 2  0 0 - 1 - 1 
Cd24" 1 0 1 0 - 2  0 0 - 1 - 2  
Cd(F)* 0 0 0 0 - 2  (1 0 - 2  - 1 
CrO4 t  1 1 0 - 1 0 3 2 - 1 - 2  
Hg ( l . 5 ) t  2 3 3 - 2  - 3  3 2 2 - 1  
C P H t  2 2 3 - 2  - 2  3 2 - 2  - 3  
T C T F P t  3 2 3 - 2 - 2 3 2 - 2 - 2 
DCVHC+ 3 2 2 - 2  - 2  3 2 - 3  - 3  
ANIT~ 2 0 0 0 - 2 1 0 - 2 0 

Abbreviat ions:  ace - -  acetate,  ala - -  alanine, HB - -  13-hydroxybutyrate, cn - -  creatinine,  cit - -  citrate, glc - -  glucose, 
gin - -  glutamine,  2-OG - -  2-oxoglutarate,  hip - -  hippurate ,  lac - -  lactate, suc - -  succinate, T M A O  - -  tr imethylamine-N- 
oxide, val - -  valine, D MA  - -  dimethylamine,  lys - -  lysine, tau - -  taurine,  DMG - -  dimethylglycine, cr - -  creatine,  CrO4 
- -  sodium chromate,  ANIT  - -  a-naphthyl isothiocyanate ,  CPH - -  cephaloridine;  TCTFP - -  3,3,3-trifluorotrichloroprop- 
l-erie, D C V H C  - -  dichlorovinyl-homocystine.  

Toxins: Hg - -  mercury (II) chloride, PAP - -  para-aminophenol ,  HCBD - -  hexachlorobutadiene,  PI - -  
propyleneimine,  BEA  - -  b romoethanamine  hydrobromide,  HYD - -  hydrazine, CC14 - -  carbon tetrachloride,  T H I O  - -  
thioacetamide,  ALY  - -  allyl alcohol, UN - -  uranyl nitrate, Cd - -  cadmium, F - -  female. 

T a b l e  2 

Output  values from neural network analysis 

Toxin Cortical Medullary Hepatic  Non-toxic Reproductive 

Hg (fed)* 0,895 0.105 0,087 0.079 0.012 
Hg (0.5)* 0.104 0.123 0,128 0.199 0.245 
Hg (1,0)* 0.989 0,084 0,032 0.079 0.012 
Hg (2.0 fed)* 0.980 0.060 0.048 0.064 0.005 
PAP (50)* 0.893 0.122 0.072 0.081 0.012 
PAP (100)* 0.973 0.094 0.038 0.064 0.006 
UN* 0.971 0.061 0.037 0.070 0.009 
HCBD* 0.968 0.110 0.030 0.065 0.007 
PI* 0.146 0.373 0.191 0.121 0.081 
BEA* 0.071 0,371 0.078 0.124 0.331 
HYD* 0.051 0.151 0.874 0.156 0.061 
CC 14* 0.053 0.130 0.847 0.170 0.067 
THIO* 0.055 0.125 0.834 0.172 0.070 
ALY* (I.097 0.190 0.720 0.138 0.049 
Cd6* 0.071 0.187 0.210 0.184 0.208 
Cd9* 0.012 0.196 0.060 0.172 0.827 
Cd 12" 0.021 0.179 0.050 0.175 0.823 
Cd24" 0,016 0.182 0.101 0.170 0.797 
Cd(F)* 0.028 0.187 0.082 0.173 0.686 
C r O 4 t  0.919 0.120 0.046 0.075 0.013 
Hg (1.5) t  0.979 0.053 0.046 0.066 0.006 
C P H t  0.979 0.059 0.075 0.066 0.004 
T C T F P t  0.983 0.079 0.029 0.061 0.005 
D C V H C t  0.983 0.079 0.026 0.060 0.006 
A N I T t  0.058 0.172 0,849 0,150 0.054 

*Training set. 
t T e s t  set. 
A perfect classification would result in a single value of 1.0 and four values of 0.0 for each toxin. 
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lac suc T M A O  val D M A  lys tau DMG cr class 

- 2  - 1  0 0 0 0 0 0 0 4 
2 1 2 2 1) 0 1) 0 () I 
3 3 3 3 - 2  1 0 0 0 1 
3 - 3  - 2  1 - 1  1 0 I 0 1 
2 1 0 1 I) 1 0 1) 0 I 
3 1 0 2 0 2 0 1 1) 1 
3 1 1) 2 0 2 0 - 1 1) 1 
2 - 2  - 1  1 - 2  1 0 1) 0 I 
1 3 - 3  0 2 1) 1) 3 () 2 
1 2 - 3  0 2 0 1) 3 2 2 
2 - 2  0 0 - 1  0 3 0 0 3 
(I - 2  - I  0 - 1  0 3 1) () 3 
() - 2  - 1 0 - 1  0 3 (I 1) 3 
2 3 - 2  0 0 0 1 --3 11 3 
0 - 1 1) 1) 0 0 1) 0 1) 4 
0 - 1 0 0 0 1) 0 1) 3 5 
1} - 1  1) 0 0 0 1) 1) 3 5 
0 - '~ 1) 0 0 0 1 0 3 5 
0 - 2  0 0 0 0 0 1) 2 5 
1 - 1  0 0 0 1 0 0 0 1 
.; 1 ~ 2 - 2  1 0 - ~  1) 1 
3 - I 1) 2 - 3  2 0 1 0 I 

~ - ~  2 - 2  ~ 0 - 1  0 I 
3 - 2  - 2  2 - 2  2 0 - I  1) 1 
1 2 11 0 0 0 3 (} 0 3 

Doses: Hg - -  0 .5-2 .0  mlg kg-~; PAP - -  50 and 100 mg kg ~; H C B D  - -  200 mR kg-~; PI - -  20 p,l kg K; B EA - -  251) mg 
kg- t ;  H Y D - - 6 0 m g k g - ' ; C C 1 4 - - 2 m l k g - ~ ; T H I O - - 2 0 m g k g - ~ ; A L Y  ~ 501xl kg ~: U N - -  1 0 m g k g  ~ ; C d - -  
6 -24  ~mol  kg-I;  sodium c h r o m a t e -  20 mg kg-t ;  A N I T -  300 mg kg- t :  CPH - - 7 5 0  mg kg-~; T C T F P -  41) mg kg-~; 
D C V H C  - -  40 mg kg -~. 

"Training set. 
~-Test set. 

T a b l e  3 
Predicted toxin classes 

Toxin Observed class Predicted class* Predicted classt  

Hg ((I.5) Non-toxic$ Reproductive Incorrect 
Hg (1.(I) Cortical Cortical Correct 
Hg (I .5) Cortical Cortical Correct 
Hg (2.0) Cortical Cortical Correct 
Hg (2.0 fed) Cortical Cortical Correct 
PAP (50) Cortical Cortical Correct 
PAP (100) Cortical Cortical Correct 
CrO4 Cortical Cortical Correct 
UN Cortical Cortical Correct 
HCBD Cortical Cortical Correct 
CPH Cortical Cortical Correct 
TCTFP Cortical Cortical Correct 
D C V H C  Cortical Cortical Correct 
PI Medullary Medullary Unclassified 
B E A  Medullary Medullary Unclassified 
HYD Hepatic Hepatic Correct 
CCI4 Hepatic Hepatic Correct 
T H I O  Hepatic Hepatic Correct 
ALY Hepatic Hepatic Correct 
AN IT Hepatic Hepatic Correct 
Cd6 Non-toxic.~ Hepatic/reproductive Incorrect 
Cd9 Reproductive Reproductive Correct 
Cd 12 Reproductive Reproductive Correct 
Cd24 Reproductive Reproductive Correct 
Cd (F) Reproductive Reproductive Correct 

* Predicted on the basis of  the highest output  score ("winner-takes-aIF').  
+ Predicted on the basis of  an output  score >0.67 correct, 0 .33-0.67 unknown,  <1).33 incorrect. 

Below the toxic threshold for the compound ,  producing no pathological abnormalit ies or changes in urinary enzyme 
excretion. 
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those applied to the trained network in the test 
set. Hg (0.5) represents a non-toxic dose and 
the network correctly does not classify this as a 
cortical toxin. However ,  it also does not give it 
a high value as a control sample. The network 
also classifies all of the liver toxins correctly, all 
output  values being high, the lowest is ALY at 
0.72. Again in the test set, the toxin ANIT is 
correctly predicted to be a hepatotoxin. In 
addition, all of the reproductive system toxins 
in the training set are classified correctly with 
output  values >0.80 except for Cd(F), the dose 
of cadmium to female rats, which has a lower 
output value of 0.69, probably as a result of the 
smaller observed perturbation of urinary 
metabolite levels in female animals. The non- 
toxic low dose of cadmium Cd6 is correctly not 
classified as toxic although again the output 
value for a control class is also low. The ability 
to classify the renal medullary toxins is not so 
good although the output values for the correct 
class are much higher than for the incorrect 
classes. The small number  of samples is a 
difficulty in the training of the network. On a 
"winner-takes-all" basis the samples in both 
the training and test sets are largely correctly 
classified (Table 3). If this approach is applied, 
then correct classification is achieved for all 
samples except for the non-toxic Hg (0.5) 
sample which is classified as a testicular toxin 
and the non-toxic Cd6 dose which is classified 
equally as a renal cortical or testicular toxin. 
The results are summarized in Table 3. 

Taking a more stringent criterion of a value 
of >0.67 being correct,  values between 0.33 
and 0.67 taken as unclassified and values <0.33 
as being incorrect also results in good classifi- 
cation as shown in Table 3. Here  only the two 
non-toxic dose levels are classified incorrectly 
and the two renal medullary toxins are class- 
ified as unknown. 

Conclusions 

The neural network approach to sample 
classification is in general predictive of the 
sample class. It appears to be reasonably 
robust and once the network is trained the 
prediction of new samples is rapid and auto- 
matic. It is hoped to more finely tune the 
network with respect to improving its pre- 
dictive power and optimizing its architecture 
(i.e. the number of nodes in the hidden layer) 
when more data becomes available and rigor- 

ous significance testing becomes feasible. 
However ,  the principal disadvantage is 
common to all neural network studies in that it 
is difficult to ascertain from the network which 
of the original sample descriptors are 
responsible for the classification. We have also 
used other pattern recognition methods to 
classify the urine NMR spectra from a more 
limited set of nephrotoxins alone [9]. The 
approach should be of general and widespread 
applicability and offers promise in areas of 
NMR of biofluids as diverse as toxicology of 
experimental drugs and in clinical diagnosis 
where pattern recognition methods based upon 
NMR spectroscopy of urine have been used to 
classify samples from patients with inborn 
errors of metabolism [22]. 
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